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III. Hypothesis Testing
�  Goal:  how to decide:

?

      We need the ability to make a decision
      among several choices.

an event has occurred
a signal is present

�
�
�

Basic Probability concepts
a-priori/posteriori probability
Bayes Rule

MAP detection
Bayes detection
Error types
Maximum likelihood criterion
Maximum error probability criterion
MinMax criterion
Neyman-Pearson criterion
Multiple hypotheses
Composite hypotheses testing
Receiver Operator Characteristic (ROC) curves
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III. Hypothesis Testing

•  A posteriori probability definition:

�  Basic Probability Concepts

•  A priori probability definition:
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channel
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�  Goal:  how to decide:

?

      We need the ability to make a decision
      among several choices.

an event has occurred
a signal is present

�
�
�
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•  Special case:  2 hypotheses only    {Hi}i = 1,2

•  Bayes Rule for discrete events.

•  Let H1, H2, …, HN be a set of mutually exclusive
    and exhaustive events.

  P(Hj): probability of hypothesis Hj

  P(A|Hj): conditional probability of A given
hypothesis Hj

  P(Hj|A): conditional probability that hypothesis
Hj is true given event (measurement,
data, received signal) A occurred
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Example:

•  P{1T|1R} =

transmitted
0

received
0

1 1

P{0} = 0.7

P{1} = 0.3

•  P{0T|0R} =

•  P{0R} =

•  P{1R} =
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�  How to formulate the problem (MAP
      detection)
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•  Assume we send a binary signal:  s = {0,1}

•  Assume we receive the noisy signal:  yn = sn + wn

  noise

•  Goal:  how to detect which value of s was received.

•  Problem can be formulated as distinguishing
    between two hypotheses.

•  Four possible outcomes:
(a)

(b)

(c)

(d)
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•  How to pick a criterion for making a decision?

•  Decision rule:

  choose hypothesis most likely to have
  occurred based on the observation

  how to pick the hypothesis most probably
  true?

–  choose H0 if:

–  choose H1 :
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•  Decision rule can be rewritten in terms of pdf:
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•  Example: Assume you are given a transmitted bit {0,1};
received in noisy environment ~N(0,1/9)

1) Compute the decision rule
2) Compute the error probabilities
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�  Bayes Detection  (binary detection problem)

•  Until now no particular weighting given to the
    two types of errors.

•  Note:  (1)  May be cases where one error type is
more harmful than the other.

(example:  radar target detection)

               (2)  Cost functions may be difficult to
 generate.

•  How to define costs:

    Cij:  cost associated with choosing hypothesis Hi
            when actually hypothesis Hj is true.

•  Cost notation:

    (1)  Cij � 0  (positive cost implies a penalty)
    (2)  usually C00, C11 are assumed to be 0

Example: C00 :
C10 :
C01 :
C11 :
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•  How to compute the average cost (risk) of the
    decision:

C =
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•  What types of errors can be made?

1

1
1/2

s
(II) (I)

Type II error Type II error

Back to binary signal example {0,1}



01/10/03 EC4570.WinterFY03/MPF 16

1

  increase one will reduce the other

�  Note:  it is not possible to reduce both
                 errors simultaneously
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Example:

Assume you transmit either “m” volts or nothing
over a wire.

1) Determine an optimum decision rule to choose
between the two hypotheses (based on one
sample).

H0 :    yn = wn
n = 1, …, N

H1 :    yn = m + wn
wN � N(0, �2), iid

2) Repeat above  when using N samples to make a
decision

3) Apply above results when

C00 = C11 = 0
C01 = C10 = K

P0 = P1 = 0.5

4) Now assume you have access to nine
independent samples.  Determine the optimum
decision rule to choose between the two
hypotheses.
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Example:
•  Assume you are given N samples of � � 1

N
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�

�

� �
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•  Assume

  Determine an optimum decision rule to choose
  between the two hypotheses.

1)  define the generic decision rule

2)  apply the rule when (based on one sample only)

0 1
2 2
1 0

0.5

4, 1

P P
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Example:
Assume we have an event which may or may not have
occurred

event occurred: data has pdf

event didn’t occur: data has pdf

Assume C00=C11=0; C01=C10=1; P0=P1=0.5

1) Determine the optimum decision rule

2) Determine PD, PFA , PM

1
1 | |( ) exp
4 2

yf y �� �
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� �

0
1( ) exp( | |)
4

f y y� �
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•  Assume we have no prior probability or cost
    information available.

•  What can we do?

�  Maximum Likelihood Criterion
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Example: Assume you have a constant signal
of value m in AWGN N(0,�2)

Compute the decision rule based on one sample
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•  Used in communications applications where:

�  Maximum Error Probability Criterion

•  Average decision cost:

Recall:

C =

01 10

00 11

1
0

C C
C C

� ��
�
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Example:
• Assume under H1 we observe: x=m+w and under H0,
we observe: x=w, w ~N(0,�2)

• Samples are observed with equal probability

•Compute the decision rule, based on a one sample basis
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Example:
• Assume N independent observations of a Gaussian
process are available

•under H1 we observe: y ~N(m0,1); and under H0, we
observe: y ~N(m1,1), assume iid & m1>m0

• Samples are observed with equal probability

•Compute the decision rule, based on a one sample basis
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Example:
•  Assume you have N independent observations
    of a Gaussian process.

•  Assume variance is either       or
    (for message 1 or 2).

•  Design the detector which allows to distinguish
    between two variances.

2
0�

2
1�
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Example:

•  Assume you have N independent observations
yn  of a Gaussian process.

•  Assume:

H0: yn ~ N(m0,1)

H1:  yn ~ N(m1,1)

•Design the Minimum prediction error criterion
detector which allows to distinguish between two data
types.
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•  Used when cost information Cij is available but
    a priori probability P0, P1 not available.

�  Min-Max (Minimax) Criterion

•  Average overall cost:

C =
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Minimum cost at
worst case P1

Worst case prior
probability P1

P1 (worst case) 10

P1

C
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Example:
• Assume N independent observations of a Gaussian
process are available

•under H1 we observe: y =1+ wn ; wn ~ N(0,1); and under
H0, we observe: y=2+ wn

• Assume C00=C11=0; C01=C10=1;

•Compute the min-max decision rule, based on a one
sample basis
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Binary Hypothesis Testing Schemes

Known prior
probabilities

P0, Pi

C00 = C11 = 0

C01 = C10 = 1

Costs Cij
known

P0 = P1

Maximum
likelihood

MAP
minimum probability of error

Bayes detection

Costs Cij
known Minmax

Neyman
Pearson

Y

Y

Y

Y

Y

N

N

N

N
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Minimum
probability
of error
(MAP)

• Hypothesis
   modeled as
   random events
   with known pdfs.
• Known prior
   probabilities P0,
   P1.

� �

� �
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Minimize cost

Maximum
likelihood

• Hypothesis
   modeled as
   random events
   with known pdfs.
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Bayes
detection

• Hypothesis
   modeled as
   random events
   with known pdfs.
• Known prior
   probabilities P0,
   P1.
• Cost functions Cij

    known.

Minmax • Hypothesis
   modeled as
   random events
   with known pdfs.
• Cost functions Cij

    known.
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where �  defined so that
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average cost
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Neyman-
Pearson

• Hypothesis
   modeled as
   random events
   with known pdfs.

� �
� �

1

0

f y
f y

H1

H0
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with
PFA = �  user specified

Maximize probability of
detection PD for a given PFA

Test
Name

Decision
Rule

Data Model
Assumptions

Optimality
Criterion


